Data for benchmarking in nonlinear system identification
نویسندگان
چکیده
System identification is a fundamentally experimental field of science in that it deals with modeling of system dynamics using measured data. Despite this fact many algorithms and theoretical results are only tested with simulations at the time of publication. One reason for this may be a lack of easily available live data. This paper therefore presents three sets of data, suitable for development, testing and benchmarking of system identification algorithms for nonlinear systems. The data sets are collected from laboratory processes that can be described by block – oriented dynamic models, and by more general nonlinear difference and differential equation models. All data sets are available for free download.
منابع مشابه
Input-output data sets for development and benchmarking in nonlinear identification
This report presents two sets of data, suitable for development, testing and benchmarking of system identification algorithms for nonlinear processes. The first data set is recorded from a laboratory process that can be well described by a block oriented nonlinear model. The data set is challenging; it consists of only 500 samples, the nonlinear effect is large and the damping is not too good. ...
متن کاملNonlinear System Identification Using Hammerstein-Wiener Neural Network and subspace algorithms
Neural networks are applicable in identification systems from input-output data. In this report, we analyze theHammerstein-Wiener models and identify them. TheHammerstein-Wiener systems are the simplest type of block orientednonlinear systems where the linear dynamic block issandwiched in between two static nonlinear blocks, whichappear in many engineering applications; the aim of nonlinearsyst...
متن کاملSystem identification of a beam with frictional contact
The nonlinear system becomes an area with numerous investigations over the past decades. The conventional modal analysis could not be applied on nonlinear continuous system which makes it impossible to construct the reduced order models and obtain system response based on limited number of measurement points. Nonlinear normal modes provide a useful tool for extending modal analysis to nonlinea...
متن کاملIdentification of Multiple Input-multiple Output Non-linear System Cement Rotary Kiln using Stochastic Gradient-based Rough-neural Network
Because of the existing interactions among the variables of a multiple input-multiple output (MIMO) nonlinear system, its identification is a difficult task, particularly in the presence of uncertainties. Cement rotary kiln (CRK) is a MIMO nonlinear system in the cement factory with a complicated mechanism and uncertain disturbances. The identification of CRK is very important for different pur...
متن کاملAdaptive fuzzy pole placement for stabilization of non-linear systems
A new approach for pole placement of nonlinear systems using state feedback and fuzzy system is proposed. We use a new online fuzzy training method to identify and to obtain a fuzzy model for the unknown nonlinear system using only the system input and output. Then, we linearized this identified model at each sampling time to have an approximate linear time varying system. In order to stabilize...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2013